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Scaling function for surface width for free boundary conditions
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We study the restricted curvature model with both periodic and free boundary conditions and show that the
scaling function of the surface width depends on the type of boundary conditions. When the free boundary
condition is applied, the surface width shows a new dynamic scaling whose asymptotic behavior is different
from the usual scaling behavior of the self-affine surfaces. We propose a generalized scaling function for the
surface width for free boundary conditions and introduce a normalized surface width to clarify the origin of the
superrough phenomena of the model.
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Surface roughening of crystal surfaces has been in
sively studied recently using both continuum equations
discrete atomistic growth models@1–3#. Various growth
models have been identified as a universality class co
sponding to a particular continuum equation for the coa
grained height variablesh(x,t), which describes the surfac
as a function of the lateral surface coordinatex and timet.
An interesting quantity of the dynamic growth process is
kinetically rough self-affine surface structure. The most
cent work concentrates on studying the surface structur
the growth models, especially on determining the dynam
critical exponents governing the surface fluctuations. The
namic scaling hypothesis is that the surface widthW, which
is the mean fluctuation of the surface height, starting from
flat substrate scales@4# as

W~ t !;LagW~ t/Lz!, ~1!

in a finite system of lateral sizeL, wherea and z are the
‘‘roughness’’ and ‘‘dynamic’’ exponents. The dynamic sca
ing functiongW(u) usually has the following asymptotic be
havior:

gW~u!;H ub for u!1

const for u@1,
~2!

where the growth exponentb5a/z. SincegW(u) becomes
constant asu5t/Lz approaches infinity ort becomes much
larger thanLz, we haveW;La for sufficiently later times
anda has been taken as the exponent representing the ro
ness of the stationary surface.

In general, the scaling functiongW(u) as well as the ex-
ponentsa and z have been taken to be independent of
type of boundary conditions. In this paper, we study the
stricted curvature~RC! model@5# with free boundary condi-
tions ~FBC! and show that the scaling function of the surfa
width depends on the type of boundary conditions. Furth
more, we show that the scaling function of the RC mode
not given in the form of Eq.~2! with FBC. The RC model is
one of the simplest discrete models with super-rough sur
@6,7#. Note that in the thermodynamic limit, the relativ
width W(L)/L of the saturated surface vanishes or diverg
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depending on whethera is less than or greater than 1 sinc
W(L)/L;La21. The surface of the RC model is supe
rough, that is,a.1, and the structure factor of the heig
follows the conventional scaling form@7#. The super-rough
surfaces show ‘‘anomalous’’ scaling behaviors in the se
that the local roughness exponenta loc @see Eq.~13!# and the
global roughness exponenta are different@8#. Yet, the scal-
ing function of the surface width has been known to be of
form of Eq.~2!. Here, we show that the RC model with FB
has a different scaling behavior; the scaling function of
surface width does not follow Eq.~2!. We suggest a scaling
function to describe the width, and we introduce a norm
ized width whose scaling function is given in the form of E
~2! with FBC as well as in periodic boundary conditio
~PBC!.

We study an equilibrium discrete growth model with R
constraint on the one-dimensional~1D! substrate~mainly
with the FBC!. Let us first explain the RC model@5# briefly
for completeness. The RC model is analogous to the
stricted solid-on-solid model@9#, except that the restriction is
on the local curvature,

u¹2hu5uh~x11!1h~x21!22h~x!u<2, ~3!

rather than on the height difference. The growth rule of
equilibrium RC model is to randomly select a site and to ta
a random action between deposition or evaporation w
equal probability, provided that the new configuration do
not violate the RC constraint at any site. Each update of
height results in the change of the local curvatures at th
sites, the selected site and the two nearest neighbor sites
relaxation or hopping of the deposited atom is allowed in
model, and the curvature restrictions are enforced for all
sites ~except at the boundary sites for the FBC!. The RC
model is believed to belong to the fourth-order continuu
linear equation,

]h~x,t !/]t 52¹4h~x,t !1h~x,t !, ~4!

whereh(x,t) is an uncorrelated Gaussian noise. This eq
tion can be solved exactly, givinga5 3

2 and z54, i.e., b
5 3

8 for the 1D substrate@5,10#. The dynamics and equilib
rium properties of the RC model with both PBC and FBC a
studied by computer simulations. We prepare a flat surfac
the initial configuration, i.e.,h(x,t)50 for all x51, . . . ,L at
t50. We then choose a site on the substrate randomly
©2003 The American Physical Society01-1
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try to add or subtract the height by one with the same pr
ability 1

2 . The new configuration is accepted as long as
satisfies the RC conditions. One Monte Carlo step orDt
51 is defined asL such tries~one try per site in average!.
We measure the surface width as

W~ t,L !5^@h~ t !2h~ t !#2&1/2, ~5!

whereA and ^A& represent the spatial and the sample av
ages ofA, respectively. We first use the PBC and confirm th
the surface widthW(t,L) shows the scaling behavior of Eq
~1! and ~2! with the roughness exponenta'1.5 and the dy-
namic exponentz'4 @5#.

Figure 1~a! shows the surface widthW in PBC as a func-
tion of t, for the systems of sizesL516, 23, 32, 45, 64, and
91. Initially they increase algebraically (t!Lz regime! and
become saturated fort@Lz, as expected for an usual sel
affine surface. We check the validity of the scaling ansatz
Eq. ~1! and~2! by plotting the scaled widthW/La against the
scaled timeu5t/Lz. As shown in Fig. 1~b!, the scaled data
collapse to a single curve witha5 3

2 and z54, supporting
the scaling behavior of Eq.~1!. We also see thatgW(u) in-
creases asub, for small u satisfying the asymptotic form o
Eq. ~2! with b5a/z' 3

8 in Fig. 1~b!. These results seem t
support the interpretation ofa as an exponent to represe
the roughness of the stationary surface at sufficiently la
times.

Next, we apply the FBC that no restricted constraints
enforced at the boundary sites (x51 andx5L) @11#. Figure
1~c! showsW versust plots for the FBC case. The widt
increases ast3/8 at the beginning, being the same as the P
case, but keeps on increasing astb8 ~with another exponen
b8) at a later timet@Lz, whereW is never saturated to
constant, in contrast to the case of the PBC. We propo
scaling formula for the FBC,

FIG. 1. ~a! Surface widthsW(t,L) for the systems of sizesL
516, 23, 32, 45, 64, and 91 as a function of timet for PBC. ~b!
Scaling plot ofW/La versust/Lz with a5

3
2 and z54 using the

data shown in~a!. ~c! The same plots as~a! for FBC. ~d! The same
plots as~b! for FBC. The guide- lines are given byy;x3/8 ~dashed
line! andy;x1/2 ~solid line!.
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W~ t,L !;LagW8 ~ t/Lz!, ~6!

with a generalized dynamic scaling functiongW8 (u) which
has the following asymptotic behavior:

gW8 ~u!;H ub for u!1,

ub8 for u@1,
~7!

so that the asymptotic form of the surface width is given

W~ t,L !;H tb for t!Lz,

tb8/Lz(b82b) for t@Lz.
~8!

In most of the growth models,b850, and the scaling func-
tion gW8 of Eq. ~7! reduces to the usual form of Eq.~2!.
However, we find thatb8' 1

2 for the RC model with the
FBC. When the scaled widthW/La is plotted against the
scaled timeu5t/Lz with a5 3

2 andz54, the surface widths
collapse to a single curve following the scaling behavior
Eq. ~6! as shown in Fig. 1~d!. The scaling functiongW8 in-
creases asu3/8 for smallu, andu1/2 for largeu. @The slopes of
the dashed and solid lines in Fig. 1~d! are 3

8 and 1
2 , respec-

tively.# Therefore, the surface widthW(t,L) has the follow-
ing anomaly:

W~ t !;H t3/8 for t!Lz,

t1/2/L1/2 for t@Lz,
~9!

in the FBC. It is interesting that the surface width is n
saturated even fort@Lz. This is due to the boundary
condition—in FBC, the overall tilt of the surface is allowe
whereas it is not allowed, in PBC. Fort@Lz, W behaves like
a random deposition problem so thatW grows ast1/2. Even
though the surface width is not saturated fort@Lz, the
roughness exponenta can be calculated through the relatio
a5zb. This a is independent of the type of boundary co
ditions.

We emphasize that the type of boundary conditions u
ally do not affect the form of scaling functions as well as t
dynamic exponents. To confirm this, we measure the sur
width of the Family model@4# with PBC. The growth algo-
rithm is to select one substrate site randomly at each t
step and then drop one particle to the selected site.
dropped particle is allowed to diffuse to one of the near
neighbor sites that have lower height as compared to
height of the selected site. It is known that the model h
a5 1

2 andz52 with PBC. In the model with FBC, we find
b850. The saturated surface width in FBC is a little b
larger than that in PBC butW follows the ordinary scaling
@Eq. ~2!# with the same values of the exponents in PB
Even in FBC, it seems that the overall tilt of the surface
not allowed according to the growth rules of the model. It
usual that the scaling functional form does not depend on
type of boundary conditions. However, we show that t
width of the RC model follows a scaling behavior in FBC

In addition to the surface width, there is another intere
ing quantity called the correlation function, which involve
the square of the height difference in distancer @9#,

G~r ,t,L !5^@h~x,t !2h~x1r ,t !#2&. ~10!
1-2
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The scaling behavior of the correlation function is given

G~r ,t,L !;r 2agG„r /j~ t,L !…, ~11!

wherej is the correlation length. The exponentz governs the
dynamics of the correlation length along the surface, wh
grows ast1/z at the beginning and eventually becomes sa
rated at the system sizeL.

It has been known that the scaling functiongG(u) for the
RC model does not approach a constant asu goes to zero but
shows a power-law scalingu2k @6,12# with a nonzerok,
which governs the behavior ofG(r ,t,L) for r z!t. There is
some debate about whether or notk is an independent expo
nent @6,7,12–14#. SincegG(u);u2k for small u, we expect
@6,12#

G~r ,t,L !;H t2b for t!r z,

r 2a2k tk/z for r z!t!Lz,

r 2a2k Lk for t@Lz,
~12!

in PBC. If one defines ‘‘local wandering exponent’’a loc by

G~r ,t,L !;r 2a loc ~13!

for r !j @7,12#, thena loc is given by

a loc5a2k/2, ~14!

from Eq. ~12!. The local wandering exponenta loc describes
the local width of the surface fluctuations over a size ofr,
wherea loc<1. The boundness ofa loc determining the shor
distance behavior of the correlation function follows fro
the triangle inequality argument@15#. It is known thata loc
51 andk51 in the RC model@6#.

Here, we concentrate onG(r ,t,L), with r 51, which rep-
resents the height difference between the neighboring
umns@12#. The local slopeS(t,L), defined as the root mea
square of the height difference between the neighboring
umns,

S~ t,L !5AG~1,t !, ~15!

is expected to have the scaling form of

S~ t,L !;LasgS~ t/Lzs!, ~16!

whereas andzs are the ‘‘roughness’’ and ‘‘dynamic’’ expo
nents for the slope. For the PBC case, we see that the
namic scaling functiongS(u) for the slope has the following
asymptotic behavior:

gS~u!;H uas /zs for u!1,

const for u@1,
~17!

with as5k/2 andzs5z from Eq. ~12!. Note that we have
only one dynamic exponent here,z5zs54.

Figure 2~a! shows the local slope versust graph for the
system of the sizesL516, 23, 32, 45, 64, and 91 with PBC
They increase algebraically initially (t!Lz regime! and be-
come saturated fort@Lz. The rescaled slopesS/Las collapse
to a single curve when they are plotted against the resc
time u5t/Lzs with as5

1
2 andzs54, as shown in Fig. 2~b!.

The rescaled graph increases asubs initially, and then satu-
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rates for u@1, where bs5as /zs5
1
8 . Therefore, the

asymptotic behavior ofS(t,L) is given by

S~ t,L !;H t1/8 for t!L4,

L1/2 for t@L4,
~18!

for the PBC case. Note that the local slopeSsaturates toL1/2

for t@L4. Since there is a restriction only on the curvatu
the height difference between the nearest neighbors ca
arbitrarily large. For 1!t!Lz, the slopeS(t,L) increases as
t1/8 and eventually saturates, being proportional toL1/2 when
the parallel correlationt1/z is of the order of the lateral sys
tem sizeL. The reason thatS(t) saturates fort.Lz is be-
cause the boundary condition effectively sets the up
bound ofS(t) as;AL.

We also apply the FBC and measure the nearest neig
height difference. Figure 2~c! showsS(t,L) versust graph
for the FBC case. The local slopeS increases ast1/8 initially,
as in the PBC case. However, it keeps on increasing fot
.Lz, unlike in the PBC case. Still,S(t,L) shows a scaling
behavior as shown in Fig. 2~d!. When the scaled slopeS/Las

is plotted against the scaled timet/Lz with as5
1
2 and z

54, the data collapse to a single curve, indicating thatSalso
follows the scaling ansatz,

S~ t,L !;LasgS8~ t/Lz!, ~19!

where the scaling functiongS8(u) is proportional toubs for

small u, andubs8 for largeu with bs5
1
8 andbs8'

1
2 . There-

fore, the local slope in FBC shows

S~ t,L !;H t1/8 for t!L4

t1/2/L3/2 for t@L4,
~20!

and increases as;t1/2 at later times. The change of th
growth exponent frombs5

1
8 to bs85 1

2 occurs when the cor-
relation length becomes the same as the system size.

FIG. 2. ~a! The root mean square slopesS(t,L) for the systems
of sizesL516, 23, 32, 45, 64, and 91 plotted against timet for
PBC. ~b! Scaling plot ofS/Las versust/Lzs with as51/2 andzs

54 from the data shown in~a!. ~c! The same plots as~a! for FBC.
~d! The same plots as~b! for FBC.
1-3
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Since both the scaling forms ofW(t,L) and S(t,L) de-
pend on the types of boundary conditions, we can consid
normalized surface width

WN~ t,L !5 W~ t,L !/S~ t,L ! , ~21!

which represents the surface width in units of the nea
neighbor height difference@12#. From the above scaling for
mula @Eqs.~1!, ~6!, ~16!, and~19!#, we expect

WN~ t,L !;La2asgN~ t/Lz!;H tbN for t!Lz,

La loc for t@Lz,
~22!

where bN5b2as /z5 1
4 and a loc5a2as51 for the RC

model. The local wandering exponent can be obtained fr
WN(L) in t@Lz. We expect that the scaling formula of E
~22! is valid for both PBC and FBC.

In PBC, the normalized widthWN(L) and the slopeS(L)
becomeLa loc andLas; respectively, ast goes to infinity, so
W(L);WN(L)S(L);La loc1as;La, with a5a loc1as .
The reason thata.1 is because the saturated slopeS(`,L)
depends onL in PBC. In FBC, the normalized widthWN(L)
saturates toLa loc, but the slopeS(t,L) increases ast1/2 as t
goes to infinity, so the widthW(t,L) diverges ast1/2. There-
fore, the average slope can be a natural unit for measu
the height in the RC model@12# so that the scaling function
of the surface width in terms of the average slope are ins
sitive to the boundary conditions.
e,

d
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We measure the surface width in the RC model for fr
boundary conditions and find a different scaling behavior
W. The asymptotic behaviors ofW andS in a discrete model
which has nonzeroas can depend on the type of the boun
ary conditions. In FBC, the width grows astb at the begin-

ning and keeps on increasing astb8 with different power law
at later times. The surface width is not saturated but
roughness exponenta can be defined by the relationa
5z b. W shows a different scaling behavior compared to
Family-Vicsek–type scaling@4#. However, if we consider the
normalized surface width, it returns to the ordinary Fami
Vicsek–type scaling. These scaling behaviors ofW andS in
FBC have not been shown before. In other models, such
the Family model@4# or restricted solid-on-solid growth
model @9#, b8 is always zero, so that the surface width
saturated at later times, being independent of the type
boundary conditions. In the RC model, the nonzeroas is
because of there being no restriction on the nearest neig
height difference. Since the saturated widthW(L) is propor-
tional to S(L)La loc, whereS is the root mean square of th
nearest neighbor height difference, the roughness exponea
is the sum ofa loc andas . This is the reason whya can be
different froma loc .
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