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Scaling function for surface width for free boundary conditions
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We study the restricted curvature model with both periodic and free boundary conditions and show that the
scaling function of the surface width depends on the type of boundary conditions. When the free boundary
condition is applied, the surface width shows a new dynamic scaling whose asymptotic behavior is different
from the usual scaling behavior of the self-affine surfaces. We propose a generalized scaling function for the
surface width for free boundary conditions and introduce a normalized surface width to clarify the origin of the
superrough phenomena of the model.
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Surface roughening of crystal surfaces has been interdepending on whethet is less than or greater than 1 since
sively studied recently using both continuum equations andV(L)/L~L% . The surface of the RC model is super-
discrete atomistic growth modelgl—3]. Various growth rough, that is,«>1, and the structure factor of the height
models have been identified as a universality class corréeollows the conventional scaling forfiv]. The super-rough
sponding to a particular continuum equation for the coarssurfaces show “anomalous” scaling behaviors in the sense
grained height variablels(x,t), which describes the surface that the local roughness exponent. [see Eq(13)] and the
as a function of the lateral surface coordinatand timet.  global roughness exponeatare differen{8]. Yet, the scal-

An interesting quantity of the dynamic growth process is theing function of the surface width has been known to be of the
kinetically rough self-affine surface structure. The most reform of Eq.(2). Here, we show that the RC model with FBC
cent work concentrates on studying the surface structure dfas a different scaling behavior; the scaling function of the
the growth models, especially on determining the dynamicurface width does not follow E@2). We suggest a scaling
critical exponents governing the surface fluctuations. The dyfunction to describe the width, and we introduce a normal-
namic scaling hypothesis is that the surface widthwhich  ized width whose scaling function is given in the form of Eq.
is the mean fluctuation of the surface height, starting from g2) with FBC as well as in periodic boundary condition
flat substrate scaldd] as (PBO.
N We study an equilibrium discrete growth model with RC

W(t)~Lgu(t/L?), (1) constraint on the one-dimensionélD) substrate(mainly
in a finite system of lateral sizk, wherea andz are the  With the FBQ. Let us first explain the RC modgb] briefly
“roughness” and “dynamic” exponents. The dynamic scal- for completeness. The RC model is analogous to the re-

ing functiongy,(u) usually has the following asymptotic be- stricted solid-on-solid mod¢B], except that the restriction is
havior: on the local curvature,

¢ for  u<l |V2h|=|h(x+1)+h(x—1)—2h(x)|<2, ©)

const for us1, 2 rather than on the height difference. The growth rule of the
equilibrium RC model is to randomly select a site and to take
where the growth exponerg= a/z. Sincegy,,(u) becomes a random action between deposition or evaporation with
constant asi=t/L? approaches infinity of becomes much equal probability, provided that the new configuration does
larger thanL?, we haveW~L¢“ for sufficiently later times not violate the RC constraint at any site. Each update of the
anda has been taken as the exponent representing the rougheight results in the change of the local curvatures at three
ness of the stationary surface. sites, the selected site and the two nearest neighbor sites. No
In general, the scaling functiog,,(u) as well as the ex- relaxation or hopping of the deposited atom is allowed in the
ponentsa and z have been taken to be independent of themodel, and the curvature restrictions are enforced for all the
type of boundary conditions. In this paper, we study the resites (except at the boundary sites for the FBChe RC
stricted curvaturéRC) model[5] with free boundary condi- model is bellieved to belong to the fourth-order continuum
tions (FBC) and show that the scaling function of the surfacelinear equation,
width depends on the type of boundary conditions. Further- _ _v4
more, we show that the scaling function of the RC model is IhOuB/at Vit +7000), @
not given in the form of Eq(2) with FBC. The RC model is where 5(x,t) is an uncorrelated Gaussian noise. This equa-
one of the simplest discrete models with super-rough surfacton can be solved exactly, giving=3 andz=4, i.e., 8
[6,7]. Note that in the thermodynamic limit, the relative = for the 1D substrat§5,10]. The dynamics and equilib-
width W(L)/L of the saturated surface vanishes or divergesium properties of the RC model with both PBC and FBC are
studied by computer simulations. We prepare a flat surface as
the initial configuration, i.eh(x,t)=0 forallx=1, ... L at
*Email address: jmkim@ssu.ac.kr t=0. We then choose a site on the substrate randomly and

gw(u)~
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FIG. 1. (a) Surface widthsw(t,L) for the systems of sizek
=16, 23, 32, 45, 64, and 91 as a function of timir PBC. (b)
Scaling plot of W/L® versust/L? with a=% and z=4 using the
data shown in(a). (c) The same plots a@) for FBC. (d) The same
plots as(b) for FBC. The guide- lines are given lyy~x%® (dashed

line) andy~x*? (solid line).

try to add or subtract the height by one with the same prob-
ability 3. The new configuration is accepted as long as it

satisfies the RC conditions. One Monte Carlo stepAor
=1 is defined ad such tries(one try per site in average
We measure the surface width as

W(t,L)=([h(t)—h(t)]})*?, (5)
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W(t,L)~L*gy,(t/L?), (6)

with a generalized dynamic scaling functigr,(u) which
has the following asymptotic behavior:

uf  for u<i,
gov(u>~[ for usl @
so that the asymptotic form of the surface width is given by
th for t<L?
W(t’L)N{tﬁ'/LZ(B"ﬁ) for t>LZ ®

In most of the growth modelg3’ =0, and the scaling func-
tion gy, of Eq. (7) reduces to the usual form of Eq).
However, we find thai3’~3 for the RC model with the
FBC. When the scaled widthiv/L® is plotted against the
scaled timeu=t/L? with a=2 andz=4, the surface widths
collapse to a single curve following the scaling behavior of
Eq. (6) as shown in Fig. ). The scaling functiorg, in-
creases as”® for smallu, andu'?for largeu. [The slopes of
the dashed and solid lines in Figidl are$ and 3, respec-
tively.] Therefore, the surface widtW(t,L) has the follow-
ing anomaly:

t3/8 t< LZ,

t>L%

for

W(n)~ tYLY2 for

9)

in the FBC. It is interesting that the surface width is not
saturated even fot>LZ% This is due to the boundary

condition—in FBC, the overall tilt of the surface is allowed,
whereas it is not allowed, in PBC. For L% W behaves like

whereA and(A) represent the spatial and the sample avera random deposition problem so thatgrows astl/z.ZEven
ages ofA, respectively. We first use the PBC and confirm thatthough the surface width is not saturated torL® the

the surface widthW(t,L) shows the scaling behavior of Egs.
(1) and(2) with the roughness exponeat=1.5 and the dy-
namic exponeng~4 [5].

Figure Xa) shows the surface widttW in PBC as a func-
tion of t, for the systems of sizds=16, 23, 32, 45, 64, and
91. Initially they increase algebraicallg<€L* regime and
become saturated fae>L?% as expected for an usual self-

roughness exponeit can be calculated through the relation
a=2zB. This « is independent of the type of boundary con-
ditions.

We emphasize that the type of boundary conditions usu-
ally do not affect the form of scaling functions as well as the
dynamic exponents. To confirm this, we measure the surface
width of the Family mode[4] with PBC. The growth algo-

affine surface. We check the validity of the scaling ansatz ofithm is to select one substrate site randomly at each time

Eq. (1) and(2) by plotting the scaled widtkV/L“ against the
scaled timeu=t/L* As shown in Fig. 1b), the scaled data
collapse to a single curve with=3 andz=4, supporting
the scaling behavior of Eql). We also see thaj(u) in-
creases ag”, for smallu satisfying the asymptotic form of
Eq. (2) with B=a/z~2 in Fig. 1(b). These results seem to

8
support the interpretation af as an exponent to represent

the roughness of the stationary surface at sufficiently late

times.

step and then drop one patrticle to the selected site. The
dropped patrticle is allowed to diffuse to one of the nearest
neighbor sites that have lower height as compared to the
height of the selected site. It is known that the model has
a=3 andz=2 with PBC. In the model with FBC, we find
B'=0. The saturated surface width in FBC is a little bit
larger than that in PBC buiV follows the ordinary scaling
[Ed. (2)] with the same values of the exponents in PBC.
Even in FBC, it seems that the overall tilt of the surface is

Next, we apply the FBC that no restricted constraints ardot allowed according to the growth rules of the model. It is

enforced at the boundary sites=f1 andx=L) [11]. Figure
1(c) showsW versust plots for the FBC case. The width
increases as’® at the beginning,

case, but keeps on increasingtﬁé (with another exponent

B’) at a later timet>L? whereW is never saturated to a
constant, in contrast to the case of the PBC. We propose
scaling formula for the FBC,

usual that the scaling functional form does not depend on the
type of boundary conditions. However, we show that the

being the same as the ppcwidth of the RC model follows a scaling behavior in FBC.

In addition to the surface width, there is another interest-
ing quantity called the correlation function, which involves
the square of the height difference in distandé®],

a
G(r,t,L)=([h(x,t) —h(x+r,1)]?). (10
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The scaling behavior of the correlation function is given by
G(r,t,L)~r?*gg(r/&(t,L)), (1)

where¢ is the correlation length. The exponergoverns the

dynamics of the correlation length along the surface, whict

grows ast'? at the beginning and eventually becomes satu
rated at the system size

It has been known that the scaling functigg(u) for the
RC model does not approach a constant gees to zero but
shows a power-law scaling™* [6,12] with a nonzerox,
which governs the behavior @&(r,t,L) for r’<t. There is
some debate about whether or rots an independent expo-
nent[6,7,12—-14. Sincegg(u)~u~“ for smallu, we expect
[6,12]

t2# for t<r?

2a— Kk +klz Z otz 2
G(r.t,L)~ r t for re<t<L? 12)

r2e=c< % for t>L%

in PBC. If one defines “local wandering exponent),. by

G(r,t,L)~r2%0c (13
for r<¢[7,12), thenqy, is given by
A= a—kl2, (14

from Eq.(12). The local wandering exponemj,. describes
the local width of the surface fluctuations over a sizer,of
wherea;,.<1. The boundness af,,. determining the short
distance behavior of the correlation function follows from
the triangle inequality argument5]. It is known thata,
=1 andx=1 in the RC mode[6].

Here, we concentrate da(r,t,L), with r=1, which rep-
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FIG. 2. (a) The root mean square slop8&,L) for the systems
of sizesL=16, 23, 32, 45, 64, and 91 plotted against titmfor
PBC. (b) Scaling plot of S/L“s versust/L? with ag=1/2 andz
=4 from the data shown ifg). (c) The same plots a&) for FBC.
(d) The same plots ak) for FBC.

rates for u>1, where B.=as/z;=3. Therefore, the
asymptotic behavior o8(t,L) is given by
t¥8  for t<L?
S(tL)~ LY2 for t>L4 (18

for the PBC case. Note that the local sldpsaturates td.*/?

for t>L%. Since there is a restriction only on the curvature,
the height difference between the nearest neighbors can be
arbitrarily large. For t<L?, the slopeS(t,L) increases as

t® and eventually saturates, being proportional 16 when

resents the height difference between the neighboring cothe parallel correlation'’? is of the order of the lateral sys-

umns[12]. The local slopes(t,L), defined as the root mean
square of the height difference between the neighboring co

umns,
S(t,L)=VG(LY), (15)

is expected to have the scaling form of
S(t,L)~Lsgg(t/L%), (16)

where ag andzg are the “roughness” and “dynamic” expo-

tem sizeL. The reason thaB(t) saturates fot>L? is be-
ltause the boundary condition effectively sets the upper
bound ofS(t) as~ L.

We also apply the FBC and measure the nearest neighbor
height difference. Figure(2) showsS(t,L) versust graph
for the FBC case. The local slof@increases as” initially,
as in the PBC case. However, it keeps on increasing for
>L% unlike in the PBC case. Stil§(t,L) shows a scaling
behavior as shown in Fig(@). When the scaled slopf&/L *s

nents for the slope. For the PBC case, we see that the dys plotted against the scaled timélL? with a;=3 and z

namic scaling functiogg(u) for the slope has the following
asymptotic behavior:

u®s’zs for u<i,

gs(u)~ (17)

const for u>1,

with as= k/2 andzs=z from Eq. (12). Note that we have
only one dynamic exponent heresz;=4.

Figure 2a) shows the local slope verstiggraph for the
system of the sizes=16, 23, 32, 45, 64, and 91 with PBC.
They increase algebraically initiallyt<L?* regime and be-
come saturated fae>L% The rescaled slope¥ L *s collapse

=4, the data collapse to a single curve, indicating Salso

follows the scaling ansatz,
S(t,L)~Lgg(t/L?), (19

where the scaling functiogg(u) is proportional tou?s for

smallu, andu®s for largeu with Bs=% and B.~%. There-
fore, the local slope in FBC shows

tl/8 t<|_4

t>L4,

for

S(tL)~ tY3/1L32 for

(20

to a single curve when they are plotted against the rescaleahd increases as-t'? at later times. The change of the

time u=t/L% with ag=3% andz,=4, as shown in Fig. ).
The rescaled graph increasesuds initially, and then satu-

growth exponent fronBs= 3 to .= 3 occurs when the cor-
relation length becomes the same as the system size.
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Since both the scaling forms &%(t,L) and S(t,L) de- We measure the surface width in the RC model for free
pend on the types of boundary conditions, we can consider boundary conditions and find a different scaling behavior of
normalized surface width W. The asymptotic behaviors ¥ andSin a discrete model

Wi (t,L)= W(t,L)/S(t,L), (21) which has nonzera¢ can depend on the type of the bound-

ary conditions. In FBC, the width grows & at the begin-

Sﬁing and keeps on increasing ths with different power law

at later times. The surface width is not saturated but the

roughness exponerk can be defined by the relation

thn o for t<L? =z B. Wshows a different scaling behavior compared to the

Lac for t>LZ (22) Family-Vicsek—type scalinfd]. However, if we consider the

. normalized surface width, it returns to the ordinary Family-

where By=B—as/z=3 and aj,c=a—as=1 for the RC  \jcsek—type scaling. These scaling behaviors\band S in

model. The local wandering exponent can be obtained frongg haye not been shown before. In other models, such as

Wi(L) in t>L% We expect that the scaling formula of Eq. yhe Family model[4] or restricted solid-on-solid growth

(22|) 'i\é%“dtgor both IT.BCdan.gtE\I/SCL d the sl L model[9], B’ is always zero, so that the surface width is
n o € norrg:.:uze Wi n(L) and the so_p(_S( ) saturated at later times, being independent of the type of

becomel "o andL*; respectively, as goes to infinity, so boundary conditions. In the RC model, the nonzerpis

W(L)~Wy(L)S(L)~L%ocT s~ *  with a=a)pc+ as. : - .
The reason that>1 is because the saturated sidgfe-,L) because of there being no restriction on the nearest neighbor

depends ot in PBC. In FBC, the normalized widtV/y(L) height differen(ie. Since the' saturated witL) is propor-
saturates td “loc, but the slopeS(t,L) increases as'? ast tional to S(_L)L loc, vyhere_S is the root mean square of the
goes to infinity, so the widthV(t,L) diverges as¥2 There- _nearest neighbor height dlffe.repce, the roughness expanent
fore, the average slope can be a natural unit for measurint§ the sum ofa;oc andas. This is the reason why can be
the height in the RC modé¢L2] so that the scaling functions different froma,,.

of the surface width in terms of the average slope are insen- This work was supported by Grant No. R01-2001-000-

which represents the surface width in units of the neare
neighbor height differencgl2]. From the above scaling for-
mula[Egs. (1), (6), (16), and(19)], we expect

Wy (t,L)~L* ¥sgy(t/L?)~

sitive to the boundary conditions. 00025-0 from the basic research program of KOSEF.
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